Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 19(12): 1936-1952, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32883801

RESUMO

Huanglongbing (HLB) is the most devastating and widespread citrus disease. All commercial citrus varieties are susceptible to the HLB-associated bacterium, Candidatus Liberibacter asiaticus (CLas), which resides in the phloem. The phloem is part of the plant vascular system and is involved in sugar transport. To investigate the plant response to CLas, we enriched for proteins surrounding the phloem in an HLB susceptible sweet orange variety, Washington navel (Citrus sinensis (L) Osbeck). Quantitative proteomics revealed global changes in the citrus proteome after CLas inoculation. Plant metabolism and translation were suppressed, whereas defense-related proteins such as peroxidases, proteases and protease inhibitors were induced in the vasculature. Transcript accumulation and enzymatic activity of plant peroxidases in CLas infected sweet orange varieties under greenhouse and field conditions were assessed. Although peroxidase transcript accumulation was induced in CLas infected sweet orange varieties, peroxidase enzymatic activity varied. Specific serine proteases were up-regulated in Washington navel in the presence of CLas based on quantitative proteomics. Subsequent activity-based protein profiling revealed increased activity of two serine proteases, and reduced activity of one protease in two C. sinensis sweet orange varieties under greenhouse and field conditions. The observations in the current study highlight global reprogramming of the citrus vascular proteome and differential regulation of enzyme classes in response to CLas infection. These results open an avenue for further investigation of diverse responses to HLB across different environmental conditions and citrus genotypes.


Assuntos
Citrus/enzimologia , Citrus/microbiologia , Progressão da Doença , Peroxidases/metabolismo , Doenças das Plantas/microbiologia , Feixe Vascular de Plantas/metabolismo , Proteômica , Serina Proteases/metabolismo , Citrus/efeitos dos fármacos , Citrus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Peroxidases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/microbiologia , Inibidores de Proteases/farmacologia , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Mol Plant Pathol ; 21(5): 716-731, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32108417

RESUMO

'Candidatus Liberibacter' species are insect-transmitted, phloem-limited α-Proteobacteria in the order of Rhizobiales. The citrus industry is facing significant challenges due to huanglongbing, associated with infection from 'Candidatus Liberibacter asiaticus' (Las). In order to gain greater insight into 'Ca. Liberibacter' biology and genetic diversity, we have performed genome sequencing and comparative analyses of diverse 'Ca. Liberibacter' species, including those that can infect citrus. Our phylogenetic analysis differentiates 'Ca. Liberibacter' species and Rhizobiales in separate clades and suggests stepwise evolution from a common ancestor splitting first into nonpathogenic Liberibacter crescens followed by diversification of pathogenic 'Ca. Liberibacter' species. Further analysis of Las genomes from different geographical locations revealed diversity among isolates from the United States. Our phylogenetic study also indicates multiple Las introduction events in California and spread of the pathogen from Florida to Texas. Texan Las isolates were closely related, while Florida and Asian isolates exhibited the most genetic variation. We have identified conserved Sec translocon (SEC)-dependent effectors likely involved in bacterial survival and virulence of Las and analysed their expression in their plant host (citrus) and insect vector (Diaphorina citri). Individual SEC-dependent effectors exhibited differential expression patterns between host and vector, indicating that Las uses its effector repertoire to differentially modulate diverse organisms. Collectively, this work provides insights into the evolution of 'Ca. Liberibacter' species, the introduction of Las in the United States and identifies promising Las targets for disease management.


Assuntos
Citrus/microbiologia , Estudo de Associação Genômica Ampla/métodos , Doenças das Plantas/microbiologia , Filogenia , Rhizobiaceae
3.
Nat Commun ; 9(1): 1718, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712915

RESUMO

The citrus industry is facing an unprecedented challenge from Huanglongbing (HLB). All cultivars can be affected by the HLB-associated bacterium 'Candidatus Liberibacter asiaticus' (CLas) and there is no known resistance. Insight into HLB pathogenesis is urgently needed in order to develop effective management strategies. Here, we use Sec-delivered effector 1 (SDE1), which is conserved in all CLas isolates, as a molecular probe to understand CLas virulence. We show that SDE1 directly interacts with citrus papain-like cysteine proteases (PLCPs) and inhibits protease activity. PLCPs are defense-inducible and exhibit increased protein accumulation in CLas-infected trees, suggesting a role in citrus defense responses. We analyzed PLCP activity in field samples, revealing specific members that increase in abundance but remain unchanged in activity during infection. SDE1-expressing transgenic citrus also exhibit reduced PLCP activity. These data demonstrate that SDE1 inhibits citrus PLCPs, which are immune-related proteases that enhance defense responses in plants.


Assuntos
Citrus/microbiologia , Cisteína Proteases/genética , Inibidores de Cisteína Proteinase/metabolismo , Evasão da Resposta Imune , Doenças das Plantas/microbiologia , Proteínas de Plantas/antagonistas & inibidores , Rhizobiaceae/patogenicidade , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Citrus/classificação , Citrus/genética , Citrus/imunologia , Cisteína Proteases/imunologia , Inibidores de Cisteína Proteinase/química , Regulação da Expressão Gênica , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Rhizobiaceae/genética , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...